The cusped hyperbolic census is complete

نویسنده

  • Benjamin A. Burton
چکیده

From its creation in 1989 through subsequent extensions, the widely-used “SnapPea census” now aims to represent all cusped finite-volume hyperbolic 3-manifolds that can be obtained from ≤ 8 ideal tetrahedra. Its construction, however, has relied on inexact computations and some unproven (though reasonable) assumptions, and so its completeness was never guaranteed. For the first time, we prove here that the census meets its aim: we rigorously certify that every ideal 3-manifold triangulation with ≤ 8 tetrahedra is either (i) homeomorphic to one of the census manifolds, or (ii) non-hyperbolic. In addition, we extend the census to 9 tetrahedra, and likewise prove this to be complete. We also present the first list of all minimal triangulations of all census manifolds, including non-geometric as well as geometric triangulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Arithmetic Invariants of 3-Manifolds

This paper describes “Snap”, a computer program for computing arithmetic invariants of hyperbolic 3-manifolds. Snap is based on Jeff Weeks’s program “SnapPea” [41] and the number theory package “Pari” [5]. SnapPea computes the hyperbolic structure on a finite volume hyperbolic 3-manifold numerically (from its topology) and uses it to compute much geometric information about the manifold. Snap’s...

متن کامل

Nonexistence of Cusp Cross-section of One-cusped Complete Complex Hyperbolic Manifolds Ii

Long and Reid have shown that some compact flat 3-manifold cannot be diffeomorphic to a cusp cross-section of any complete finite volume 1-cusped hyperbolic 4-manifold. Similar to the flat case, we give a negative answer that there exists a 3-dimensional closed Heisenberg infranilmanifold whose diffeomorphism class cannot be arisen as a cusp cross-section of any complete finite volume 1-cusped ...

متن کامل

Minimum Volume Cusped Hyperbolic Three-manifolds

This corollary extends work of Cao and Meyerhoff who had earlier shown that m003 and m004 were the smallest volume cusped manifolds. Also, the above list agrees with the SnapPea census of one-cusped manifolds produced by Jeff Weeks ([W]), whose initial members are conjectured to be an accurate list of small-volume cupsed manifolds. Let N be a closed hyperbolic 3-manifold with simple closed geod...

متن کامل

A Duplicate Pair in the SnapPea Census

We identify a duplicate pair in the well-known Callahan-HildebrandWeeks census of cusped finite-volume hyperbolic 3-manifolds. Specifically, the six-tetrahedron non-orientable manifolds x101 and x103 are homeomorphic.

متن کامل

A census of cusped hyperbolic 3-manifolds

The census provides a basic collection of noncompact hyperbolic 3-manifolds of finite volume. It contains descriptions of all hyperbolic 3manifolds obtained by gluing the faces of at most seven ideal tetrahedra. Additionally, various geometric and topological invariants are calculated for these manifolds. The findings are summarized and a listing of all manifolds appears in the microfiche suppl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1405.2695  شماره 

صفحات  -

تاریخ انتشار 2014